工程师不可不知的开关电源关键设计(二)

牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,应广大网友迫切要求,电子发烧友推出开关电源设计整合系列和工程师们一起分享,请各位继续关注后续章节。

     一、开关电源EMI的一些设计经验

  开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。

  1.开关电源的EMI源

  开关电源的EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。

  (1)功率开关管

  功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。

  (2)高频变压器

  高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。

  (3)整流二极管

  整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。

  (4)PCB

  准确的说,PCB是上述干扰源的耦合通道,PCB的优劣,直接对应着对上 述EMI源抑制的好坏。

  2.开关电源EMI传输通道分类

  (一). 传导干扰的传输通道

  (1)容性耦合

  (2)感性耦合

  (3)电阻耦合

  a.公共电源内阻产生的电阻传导耦合

  b.公共地线阻抗产生的 电阻传导耦合

  c.公共线路阻抗产生的电阻传导耦合

  (二). 辐射干扰的传输通道

  (1)在开关 电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电 感线圈可以假设为磁偶极子;

  (2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间);

  (3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。

  3.开关电源EMI抑制的9大措施

  在开关电源中,电压和电流的突变,即高dv/dt和di/dt,是其EMI产生的主要原因。实现开关电源的EMC设计技术措施主要基于以下两点:

  (1)尽量减小电源本身所产生的干扰源,利用抑制干扰的方法或产生干扰较小的元器件和电路,并进行合理布局;

  (2)通过接地、滤波、屏蔽 等技术抑制电源的EMI以及提高电源的EMS。

  分开来讲,9大措施分别是:

  (1)减小dv/dt和di/dt(降 低其峰值、减缓其斜率)

  (2)压敏电阻的合理应用,以降低浪涌电压

  (3)阻尼网络抑制过冲

  (4)采用软恢复特 性的二极管,以降低高频段EMI

  (5)有源功率因数校正,以及其他谐波校正技术

  (6)采用合理设计的电源线滤波器

  (7)合理的接地处理

  (8)有效的屏蔽措施

  (9)合理的PCB设计

  4.高频变压器漏感的控制

  高频变压器的漏感是功率开关管关断尖峰电压产生的重要原因之一,因此,控制漏感成为解决高频变压器带来的EMI首要面对的问题。

  减小高频变压器漏感两个切入点:电气设计、工艺设计!

  (1)选择合适磁芯,降低漏感。漏感与原边匝数平方成正比,减小匝数会显著降低漏感。

  (2)减小绕组间的绝缘层。现在有一种称之为“黄金薄膜”的绝缘层,厚度20~100um,脉冲击穿电压可达几千伏。

  (3)增加绕组间耦合度,减小漏感。

  5.高频变压器的屏蔽

  为防止高频变压器的漏磁对周围电路产生干扰,可采用屏 蔽带来屏蔽高频变压器的漏磁场。屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的 泄漏。

  高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。为防止该噪声,需要对变 压器采取加固措施:

  (1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生;

  (2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。

 二、半桥式开关电源变压器参数计算方法

  半桥式开关电源变压器参数的计算

  半桥式变压器开关电源的工作原理与推挽式变压器开关电源的工作原理是非常接近的,只是变压器的激励方式与工作电源的接入方式有点不同;因此,用于计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的数学表达式,只需稍微修改就可以用于半桥式变压器开关电源变压器初级线圈N1绕组匝数的计算。

  A)半桥式开关电源变压器初级线圈匝数的计算

  半桥式变压器开关电源与推挽式开关电源一样,也属于双激式开关电源,因此用于半桥式开关电源的变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,并且变压器铁心可以不用留气隙。半桥式开关电源变压器的计算方法与前面推挽式开关电源变压器的计算方法基本相同,只是直接加到变压器初级线圈两端的电压仅等于输入电压Ui的二分之一。根据推挽式开关电源变压器初级线圈匝数计算公式(1-150)和(1-151)式:

  设直接加到半桥式开关电源变压器初级线圈两端的电压为Uab,且Uab =Ui/2 ,则上面(1-150)和(1-151)式可以改写为:

  上面(1-174)和(1-175)式就是计算半桥式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Uab为加到变压器初级线圈N1绕组两端的电压,Uab =Ui/2 ,Ui为开关电源的工作电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);

  F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

  B)交流输出半桥式开关电源变压器初、次级线圈匝数比的计算

  半桥式变压器开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流,或把交流整流成直流后再逆变成交流,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。请参考图1-36、图1-38、图1-39。

  用于逆变的半桥式变压器开关电源一般输出电压uo都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得半桥式开关电源变压器初、次级线圈匝数比。

  根据前面分析,半桥式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈输出的正激电压来决定。因此,根据(1-158)、(1-159)、(1-161)等式其中一式就可以出半桥式变压器开关电源的输出电压的半波平均值。由此求得半桥式逆变开关电源变压器初、次级线圈匝数比:

  n =N2/N1 =2Uo/Ui = 2Upa/Ui —— 次/初级变压比,D = 0.5时 (1-176)

  (1-176)式就是计算半桥式逆变开关电源变压器初、次级线圈匝数比的公式。式中,N1为变压器初级线圈N1绕组的匝数,N2为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。

  (1-176)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-176)式的右边乘以一个略大于1的系数。

  C)直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比的计算

  直流输出电压非调整式半桥开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。请参考1-43、图1-44、图1-45。这种直流输出电压非调整式半桥开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式半桥开关电源变压器初、次级线圈匝数比可直接利用(1-176)式来计算。即:

  n =N2/N1 =2Uo/Ui = 2Upa/Ui —— 次/初级变压比,D = 0.5时 (1-176)

  不过,在低电压、大电流输出的情况下,一定要考虑整流二极管的电压降和变压器的工作效率。

  D)直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的计算

  直流输出电压可调整式半桥开关电源的功能就要求输出电压可调,因此,半桥式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为半桥式变压器开关电源正、反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。当要求输出电压可调范围为最大时,占空比最好取值为0.25。根据(1-140)和(1-145)式,并把输入电压Ui换成Uab可求得:

  (1-177)、(1-178)式,就是计算直流输出电压可调整式半桥开关电源变压器初、次级线圈匝数比的公式。式中,N1为变压器初级线圈N1绕组的最少匝数,N2为变压器次级线圈的匝数,Uo为直流输出电压,Uab为加到变压器初级线圈N1绕组两端的电压,Uab =Ui/2 ,Ui为开关电源的工作电压。

  同样,在低电压、大电流输出的情况下,一定要考虑变压器的工作效率以及整流二极管的电压降和开关器件接通时的电压降。

 三、基本电子电路:开关电源讲解

  做硬件工程师的,几乎都碰到过开关电源。网上的资料也很多。笔者也经常接触开关电源,从工程应用实践中自己总结了一些开关电源的心得。本文力求浅显易懂。但愿对开关电源比较陌生的工程师能有所帮助。开关电源是一个很大的领域,本文的描述仅见一斑,有不当之处,望以斧正之。

  1:常用的开关电源的原理——单端自激boost升压电路

  如上图,开关电源利用电感电流不能瞬间改变的原理,用ctrl信号打开三极管,使得Vin通过电感和三极管向地流动。由于电感电流不能突变,因此,这个回路不能理解成短路,应理解成给电感充能。充能是通过电感流过的电流不断增大体现的,电流越大,电感的储能越多。

  当电感电流增加到一定程度,用ctrl关闭三极管。则电感电流的回地的路就被切断。同样由于电感电流不能突变,因此,电流就会通过二极管流向电容。这样就完成一次电感通过二极管给电容充电的过程。Ctrl信号周期性不停止的复现,宏观上就形成从vin不断流向电容的电流。这个过程与vout和vin电压孰高孰低无关。意味着可升压,也可降压。

  上面说的切断电感电流,迫使电流流向改变,一般叫做“反激”,上图的电感只有一个,反激点只有一个,叫做单端。有的电路用2个电感,交替进行电流流动。做直流逆变交流时,一般用2个电感,形成推挽效果。

  2:如何实现稳压

  上图是原理。由于vout的负载不确定,因此,vout不可能稳定在我们期望的电压上,可能是升压,也可能是降压。解决这个问题的办法是利用vout的电压进行反馈。当vout电压低于期望值时,反馈信号就会调整ctrl,使它打开三极管的时间相对延长。则电感充能更多,从而使vout上升。反过来也一样。

  这样ctrl信号就有了个名字,叫pwm。一般是改变它的占空比。当vout电压不够时,增加pwm信号占空比,使得更多的电能流向vout。

  3:占空比

  从原理容易理解,pwm信号不能达到100%占空比,那样就真的短路了。当pwm信号占空比大到一定程度时,也就是刚好有时间让三极管能开关时,电感的充能达到极大值。这个电能必须能满足后续电路的消耗。这样就能使vout稳定在我们需要的电压上。

  4:实用电路

  有许多成熟芯片提供Pwm信号的产生,并提供反馈电压调整pwm的占空比,这类芯片叫开关电源芯片,是专门用来设计开关电源的。下图附一个成熟电路,是笔者在工程中应用的。

  这个芯片把三极管集成到芯片内部,因此应用比较简单。因为它能提供的电流很小,是给lcd供电的。+12V后面还有一个10uF/25V的电容。

  5:设计开关电源要注意的几个问题

  A:注意电感的选择,应参照芯片资料,切忌理解成输出电流多大就用多大的电感,这是许多新手容易理解错的地方。例如,输出电流是0.5A,电感可不要选0.5A的哦,要按资料来选,一般是1A左右。如果电感的电流参数选小了,会很热。二极管也一样,电流参数不能按最终输出电流选。电感值的大小涉及到饱和电流的问题,即电流大到一定程度后呈现饱和状态,电流则会瞬间增大,不再受电流不能突变的约束。因此选择电感时,可以比资料的推荐值稍大一些。因为电感的误差比较大,市场常见的电感是±20%,所以宁大勿小的原则。买电感时要注意。

  B:第1节的图里的三极管,从原理易得:其导通电阻越小越好,开关响应越快越好。这2个因素是决定效率的最主要的2个方面。一般选择mos管,要注意mos管的导通电阻和栅极寄生电容。芯片的输出能否驱动得了栅极,如果驱动栅极的能力不够,应使用LM5111等驱动芯片。

  C:开关电源的噪声比较大,尤其它是给后续电路提供电源的,这使得后续电路的电源从骨子里就带噪声。这种噪声的消除,需要使用滤波电路,必要时用π型滤波。滤波要消耗电能,这与要达到的稳压效果成为一对矛盾,需要工程师权衡为达到某效果需要付出多大的滤波消耗。在开关电源后面串联线性电源(例如7805等)不能显著消除噪声。一味加大电容也不是办法,噪声仍然能够通过。不要期望既不付出电能消耗,又能消除噪声。但是串联电感器件的滤波电路确实更加节省一些。

  D:开关电源两端隔离的做法是用3个线圈共轭,一个用于自激充能,一个用于输出,一个用于电压反馈。值得一提的是,这种隔离不能消除开关引起的各种噪声。噪声会沿着共轭电感传递,而且噪声的损耗很小。由于电压反馈变成非直接的反馈,这种电源一般具有较大的误差,但精度受影响很小,一般都带输出电压调整。市场常见的模块电源一般都带电压微调。

  E:开关电源的地的布线。为了减少噪声,需给噪声尽量短的回地路线。第1节的图中用了2个地符号。这2个地最终要接在一起,需要注意的是,vout后端有个电容,在这个电容的负端把2个地接在一起。这样,开关芯片的噪声能最大程度的消耗在自己那边,能大大改善vout的噪声。

  F:设计开关电源时,功率设计要至少保留1倍的余地,例如设计5V1A的开关电源,最大功率输出要能达到2A。不要按需求设计成1A的,那样会使pwm占空比接近最大值,电感、mos管等都会发热。一般掌握在稳定输出时,pwm在50%或稍小为宜。这样整个电路工作在一个“比较舒服”的情况下,噪声、发热等各方面综合性能都比较好。

  G:开关电源的保护。从第1节的图可以看出,当某种原因造成ctrl电平为常高时,会导致电感和三极管烧毁。Ctrl常低还好些,但是vin会串到vout上,对后续电路造成欠压供电。常用的保护是在vin前端串联一个过流保护器件,它一般是热保护,电流过大会断开。过一会儿又导通。

四、开关电源的热设计方法解析

  开关电源已普遍运用在当前的各类电子设备上,其单位功率密度也在不断地提高.高功率密度的定义从1991年的25w/in3、1994年36w/in3、1999年52w/in3、2001年96w/in3,目前已高达数百瓦每立方英寸.由于开关电源中使用了大量的大功率半导体器件,如整流桥堆、大电流整流管、大功率三极管或场效应管等器件。它们工作时会产生大量的热量,如果不能把这些热量及时地排出并使之处于一个合理的水平将会影响开关电源的正常工作,严重时会损坏开关电源.为提高开关电源工作的可靠性,热设计在开关电源设计中是必不可少的重要一个环节。

  1.热设计中常用的几种方法

  为了将发热器件的热量尽快地发散出去,一般从以下几个方面进行考虑: 使用散热器、冷却风扇、金属pcb、散热膏等.在实际设计中要针对客户的要求及最佳费/效比合理地将上述几种方法综合运用到电源的设计中。
  2.半导体器件的散热器设计

  由于半导体器件所产生的热量在开关电源中占主导地位,其热量主要来源于半导体器件的开通、关断及导通损耗.从电路拓扑方式上来讲,采用零开关变换拓扑方式产生谐振使电路中的电压或电流在过零时开通或关断可最大限度地减少开关损耗但也无法彻底消除开关管的损耗故利用散热器是常用及主要的方法.

  2.1 散热器的热阻模型

  由于散热器是开关电源的重要部件,它的散热效率高与低关系到开关电源的工作性能.散热器通常采用铜或铝,虽然铜的热导率比铝高2倍但其价格比铝高得多,故目前采用铝材料的情况较为普遍.通常来讲,散热器的表面积越大散热效果越好.散热器的热阻模型及等效电路如上图所示

  半导体结温公式如下式如示:

  pcmax(ta)= (tjmax-ta)/θj-a (w) 

  pcmax(tc)= (tjmax-tc)/θj-c (w) 

  pc: 功率管工作时损耗

  pc(max): 功率管的额定最大损耗

  tj: 功率管节温

  tjmax: 功率管最大容许节温

  ta: 环境温度

  tc: 预定的工作环境温度

  θs : 绝缘垫热阻抗

  θc : 接触热阻抗(半导体和散热器的接触部分)

  θf : 散热器的热阻抗(散热器与空气)

  θi : 内部热阻抗(pn结接合部与外壳封装)

  θb : 外部热阻抗(外壳封装与空气)

  根据图2热阻等效回路, 全热阻可写为:

  θj-a=θi+[θb *(θs +θc+θf)]/( θb +θs +θc+θf)

  又因为θb比θs +θc+θf大很多,故可近似为

  θj-a=θi+θs +θc+θf

  ①pn结与外部封装间的热阻抗(又叫内部热阻抗) θi是由半导体pn结构造、所用材料、外部封装内的填充物直接相关.每种半导体都有自身固有的热阻抗.

  ②接触热阻抗θc是由半导体、封装形式和散热器的接触面状态所决定.接触面的平坦度、粗糙度、接触面积、安装方式都会对它产生影响。当接触面不平整、不光滑或接触面紧固力不足时就会增大接触热阻抗θc。在半导体和散热器之间涂上硅油可以增大接触面积,排除接触面之间的空气而硅油本身又有良好的导热性,可以大大降低接触热阻抗θc。

  当前有一种新型的相变材料,专门设计用采取代硅油作为传热介面,在65℃(相变温度)时从固体变为流体,从而确保界面的完全润湿,该材料的触变特性避免其流到介面外。其传热效果与硅油相当,但没有硅油带来的污垢,环境污染和难于操作等缺点。用于不需要电气绝缘的场合。典型应用包括cpu散热片,功率转换模块或者其它任何簧片固定的硅油应用场合,它可涂布在铝质基材的两面,可单面附胶,双面附胶或不附胶。

  ③绝缘垫热阻抗θs

  绝缘垫是用于半导体器件和散热器之间的绝缘.绝缘垫的热阻抗θs取决于绝缘材料的材质、厚度、面积。下表中列出几种常用半导体封装形式的θs+θc

  ④散热器热阻抗θf

  散热器热阻抗θf与散热器的表面积、表面处理方式、散热器表面空气的风速、散热器与周围的温度差有关。因此一般都会设法增强散热器的散热效果,主要的方法有增加散热器的表面积、设计合理的散热风道、增强散热器表面的风速。散热器的散热面积设计值如下图所示:

  但如果过于追求散热器的表面积而使散热器的叉指过于密集则会影响到空气的对流,热空气不易于流动也会降低散热效果。自然风冷时散热器的叉指间距应适当增大,选择强制风冷则可适当减小叉指间距。如上图所示:

  ⑤散热器表面积计算

  s=0.86w/(δt*α) (m2)

  δt: 散热器温度与周围环境温度(ta)的差(℃)

  α: 热传导系数,是由空气的物理性质及空气流速决定。α由下式决定。

  α=nu*λ/l ()

  λ:热电导率(kcal/m2h)空气物理性质

  l:散热器高度(m)

  nu:空气流速系数。由下式决定。

  nu=0.664*√[(vl)/v’]*3√pr

  v:动粘性系数(m2/sec),空气物理性质。

  v’:散热器表面的空气流速(m/sec)

  pr: 系数,见下表

  2.2 散热设计举例

  [例] 2scs5197在电路中消耗的功率为pdc=15w,工作环境温度ta=60℃,求在正常工作时散热器的面积应是多少?
 
  解: 查2scs5197的产品目录得知:pcmax=80w(tc=25℃),tjmax=150℃且该功率管使用了绝缘垫和硅油. θs+θc=0.8℃/w

  从(2)式可得

  θi=θj-c=(tjmax-tc)/pcmax-=(150-25)/80≒1.6℃/w

  从(1)式可得

  θj-a=(tjmax-ta)/pdc=(150-60)/15=6℃/w

  从(4)式可得

  θf=θj-a-(θi+θc+θs) ≒6-(1.6+0.8)=3.6℃/w

  根据上述计算散热器的热阻抗须选用3.6℃/w以下的散热器.从散热器散热面积设计图中可以查到:使用2mm厚的铝材至少需要200cm2,因此需选用140*140*2mm以上的铝散热器.

  注:在实际运用中,tjmax必须降额使用,以80%额定节温来代替tjmax确保功率管的可靠工作。

  3、自然风冷与强制风冷

  在开关电源的实际设计过程中,通常采用自然风冷与风扇强制风冷二种形式。自然风冷的散热片安装时应使散热片的叶片竖直向上放置,若有可能则可在pcb上散热片安装位置的周围钻几个通气孔便于空气的对流。

  强制风冷是利用风扇强制空气对流,所以在风道的设计上同样应使散热片的叶片轴向与风扇的抽气方向一致,为了有良好的通风效果越是散热量大的器件越应靠近排气风扇,在有排气风扇的情况下,散热片的热阻如下表所示:
  4、金属pcb

  随着开关电源的小型化,表面贴片元件广泛地运用到实际产品中,这时散热片难于安装到功率器件上。当前克服该问题主要采取金属pcb作为功率器件的载体,主要有铝基覆铜板、铁基覆铜板,金属pcb的散热性远好于传统的pcb且可以贴装smd元件。另有一种铜芯pcb,基板的中间层是铜板绝缘层采用高导热的环氧玻纤布粘结片或高导热的环氧树脂,它是可以双面贴装smd元件,大功率smd元件可以将smd自身的散热片直接焊接在金属pcb上,利用金属pcb中的金属板来散热。

  5、发热元件的布局

  开关电源中主要发热元件有大功率半导体及其散热器,功率变换变压器,大功率电阻。发热元件的布局的基本要求是按发热程度的大小,由小到大排列,发热量越小的器件越要排在开关电源风道风向的上风处,发热量越大的器件要越靠近排气风扇。

  为了提高生产效率,经常将多个功率器件固定在同一个大散热器上,这时应尽量使散热片靠近pcb的边缘放置。但与开关电源的外壳或其它部件至少应留有1cm以上的距离。若在一块电路板中有几块大的散热器则它们之间应平行且与风道的风向平行。在垂直方向上则发热小的器件排在最低层而发热大的器件排在较高处。

  发热器件在pcb的布局上同时应尽可能远离对温度敏感的元器件,如电解电容等。

  6、结语

  开关电源的热设计应充分考虑产品所处的工 作环境及实际的工作状态并将上述几种方法综合运用才能设计出既经济又能充分保证半导体散热的开关电源产品。

牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,由于广大工程师网友对前两期的热烈反响,电子发烧友再接再厉推出《工程师不可不知的开关电源关键设计》系列三和工程师们一起分享,请各位继续关注后续章节。

  一、开关电源中浪涌电流抑制模块的应用

  1 上电浪涌电流

  目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。

  浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这类现象发生,而不得不选用更高额定电流的熔断器,但将出现过载时熔断器不能熔断,起不到保护整流器及用电电路的作用;过高的上电浪涌电流对整流器和滤波电容器造成不可恢复的损坏。因此,必须对带有电容滤波的整流器输入浪涌电流加以限制。

  2 上电浪涌电流的限制

  限制上电浪涌电流最有效的方法是,在整流器与滤波电容器之间,或在整流器的输入侧加一负温度系数热敏电阻(NTC),如图3所示。利用负温度系数热敏电阻在常温状态下具有较高阻值来限制上电浪涌电流,上电后由于NTC流过电流发热使其电阻值降低以减小NTC上的损耗。这种方法虽然简单,但存在的问题是限制上电浪涌电流性能受环境温度和NTC的初始温度影响,在环境温度较高或在上电时间间隔很短时,NTC起不到限制上电浪涌电流的作用,因此,这种限制上电浪涌电流方式仅用于价格低廉的微机电源或其他低成本电源。而在彩色电视机和显示器上,限制上电浪涌电流则采用串一限流电阻,电路如图4所示。最常见的应用是彩色电视机,这种方法的优点是简单,可靠性高,允许在宽环境温度范围内工作,其缺点是限流电阻上有损耗,降低了电源效率。事实上整流器上电处于稳态工作后,这一限流电阻的限流作用已完成,仅起到消耗功率、发热的负作用,因此,在功率较大的开关电源中,采用上电后经一定延时后用一机械触点或电子触点将限流电阻短路,如图5所示。这种限制上电浪涌电流方式性能好,但电路复杂,占用体积较大。为使应用这种抑制上电浪涌电流方式,象仅仅串限流电阻一样方便,本文推出开关电源上电浪涌电流抑制模块。

  3 上电浪涌抑制模块

  3.1 带有限流电阻的上电浪涌电流抑制模块

  将功率电子开关(可以是MOSFET或SCR)与控制电路封装在一个相对很小的模块(如400W以下为25mm×20mm×11mm)中,引出3~4个引脚,外接电路如图6(a)所示。整流器上电后最初一段时间,外接限流电阻抑制上电浪涌电流,上电浪涌电流结束后,模块导通将限流电阻短路,这样的上电过程的输入电流波形如图6(b)所示。很显然上电浪涌电流峰值被有效抑制,这种上电浪涌电流抑制模块需外接一限流电阻,用起来很不方便,如何将外接电阻省掉将是电源设计者所希望的。

  3.2 无限流电阻的上电浪涌电流抑制模块

  有人提出一种无限流电阻的上电浪涌电流抑制电路如图7(a)所示,其上电电流波形如图7(b)所示,其思路是将电路设计成线形恒流电路。实际电路会由于两极放大的高增益而出现自激振荡现象,但不影响电路工作。从原理上讲,这种电路是可行的,但在使用时则有如下问题难以解决:如220V输入的400W开关电源的上电电流至少需要达到4A,如上电时刚好是电网电压峰值,则电路将承受4×220×=1248W的功率。不仅远超出IRF840的125W额定耗散功率,也远超出IRFP450及IRFP460的150W额定耗散功率,即使是APT的线性MOSFET也只有450W的额定耗散功率。因此,如采用IRF840或IRFP450的结果是,MOSFET仅能承受有限次数的上电过程便可能被热击穿,而且从成本上看,IRF840的价格可以接受,而IRFP450及IRFP460则难以接受,APT的线性MOSFET更不可能接受。

  欲真正实现无限流电阻的上电浪涌电流抑制模块,需解决功率器件在上电过程的功率损耗问题。作者推出的另一种上电浪涌电流抑制模块的基本思想是,使功率器件工作在开关状态,从而解决了功率器件上电过程中的高功率损耗问题,而且电路简单。电路如图8(a)和图8(b)所示,上电电流波形如图8(c)所示。

  3.3 测试结果

  A模块在400W开关电源中应用时,外壳温升不大于40℃,允许间隔20ms的频繁重复上电,最大峰值电流不大于20A,外形尺寸25mm×20mm×11mm或  35mm×25mm×11mm。

  B模块和C模块用于800W的额定温升不大于40℃,重复上电时间间隔不限,上电峰值电流为正常工作时峰值电流的3~5倍,外形尺寸35mm×30mm×11mm或者50mm×30mm×12mm。

  模块的铝基板面贴在散热器上,模块温度不高于散热器5℃。

  4 结语

  开关电源上电浪涌电流抑制模块的问世,由于其外接电路简单,体积小给开关电源设计者带来了极大方便,特别是无限流电阻方案,国内外尚未见到相关报道。同时作者也将推出其它冲击负载(如交流电机及各种灯类等)的上电浪涌电流抑制模块。

  二、开关电源并联均流实现

  引言

  大功率DC/DC开关电源并联中遇到的主要问题就是电流不均,特别在加重负载时,会引起较为严重的后果。普通的均流方法是采取独立的PWM控制器的各个模块,通过电流采样反馈到PWM控制器的引脚FB或者引脚COMP,即反馈运放的输入或者输出脚来凋节输出电压,从而达到均流的目的。显然,电流采样是一个关键问题:用电阻采样,损耗比较大,电流放大后畸变比较大;用电流传感器成本高;用电流互感器采样不是很方便,州时会使电流失真。本文提出了一种新型的、方便的、无损的电流采样方法,并在这种电流检测方法的基础上实现了并联系统的均流。

  1 一种新的电流采样方法

  如前所述,在均流系统中一些传统的电流采样力法都或多或少有些缺点。而本文提出的这种新的电流采样力法,既简单方便,又没有损耗。

  下面以图l所示的Buck电路为例,说明这种新的电流检测方法的原理和应用。

  电流检测电路由一个简单的RC网络组成,没流过L的电流为iL,流过C的电流为ic,L两端的电压为vL,输出电压为vo上电压为vc,则有vL+iLR1+vo.=vc+icR (1)

  对式(1)在一个开关周期求平均值得

  式中:VL是电感上的电压在一个开关周期的平均值,显然VL=O;

  Vo为输出电压平均值;

  IL电感电流平均值,等于负载电流ILoad;

  Ic是电容在一个开关周期内充放电电流的平均值,显然Ic=0;

  R1为电感的等效串联电阻(ESR)。

  于是式(2)可化为

  所以,要检测负载电流及电感电流的大小,只要检测RC网络电容上的电压的大小就行了,这种方法可以很方便、简易、没有损耗地对电流进行采样。

  2 基于新的电流采样方法的均流原理

  以两路并联Buck电路为例,如图2所示。

  由式(3)知,

  Vc1=IL1R1+V

  Vc2=IL2R2+V

  式中:Vc1、Vc2分别为C1和C2上电压的平均值;

  IL1、IL2分别是L-和L2流过电流的平均值,亦即两路输出电流平均值;

  R1及R2是滤波电感的等效串联电阻,当在工艺上设计并联电源每路输出电感基本上一样时,可以认为R1=R2。

  因此,要控制两路电流均流,即要求IL1=IL2,于是,只要控制Vc1=Vc2就行了。所以,电容C1及C2上的电压Vc1和Vc2可以代表两路电流IL1及IL2大小,可用来进行均流控制。

  这样,便可得到如图3所示的控制框图。

  3 常用均流方法的分析比较

  开关电源并联系统常用的均流方法有以下几种。

  输出阻抗法即Droop(下垂,倾斜)法调节开关变换器的外特性倾斜度(即调节输出阻抗),以达到并联模块接近均流的日的。这种方法是一种简单的大致均流的方法,精度比较低。

  主从法适用于电流型控制的并联开关电源系统中。这种均流系统中有电压控制和电流控制,形成双闭环控制系统。这种方法要求每个模块问有通讯,所以使系统复杂化,并且当主模块失效时,整个电源系统便不能工作。

  平均值均流每个并联模块的电流放大器输出端接一个相同的电阻到一条公共母线上,形成平均值母线。当某模块电压比母线电压高时,输出电压下降,反之亦然。

  最大值均流法和平均值均流法相似,区别只是每路电流通过一个二极管连到一条公共母线上。这种方法其实质是一种“民主均流”方法,电流最大的那个模块自动成为主模块,其他模块为从模块,从而“自动主从控制”。

  平均值均流和最大值均流法的均流母线断开或者开路都不会影响各个电源模块独立工作,并且是自动均流方法,均流精度比较高。

  图4为常见均流方法的原理图。如果均流母线是并联模块电流的平均值,则是平均值均流法;如果是并联模块电流的最大值,则是最大值均流法;如果均流母线是并联模块中的主模块的电流,则就是主从均流法。但是,在这些均流方法中,每个模块都需要有一套独立的PWM控制环。

4 新的均流方案

  本文提出的方案是基于前所述的每路加一个简单的RC网络检测其分配的电流大小。电容C两端的电压平均值就可以表征这路模块的电流大小,所以,对系统进行均流控制就是对各路RC网络C上电压进行均压。其均流原理图如图5所示。

  图5中:Vbus为均流母线电压;

  Vref为输出电压参考值;

  Vs为输出电压的采样值。

  其工作原理和过程如下:

  通过检测RC网络中C两端的电压,作为电流信号,几路电流信号(本例只有两路)通过一个相同的电阻就得到了平均值均流母线,平均值均流母线电压值与负载有关,表征负载电流的大小。

  然后将每路采样来的电流信号与母线电压比较,得到误差信号,去修正输出电压参考信号,从而对PWM控制器的占空比输出进行微调,达到均流和稳压的目的。

  5 实测结果

  样机是一台DC5V输入,2V/40A输出的4路Buck并联的开关电源,工作频率为200 kHz,带上满载进行测量每一路电流输出,均流效果好,误差在2%以下,电源输出稳定。当输出电流越大,即大功率并联的电源系统中,均流效果越好。

  6 结语

  这种方案使电流检测很方便,能高效率、低成本、简单、方便地实现并联系统的均流。

  三、典型开关电源保护电路

  多数LED应用利用功率转换和控制组件连接各种功率源,如交流电线、太阳能电池板或电池,来控制LED驱动装置的功率耗散。对这些接口加以保护,防止它们因过流和过温而受损,常常用到具有可复位能力的聚合物正温度系数(PPTC)组件(图)。可以与功率输入串联一个PolySwitch LVR组件,防止因电气短路、电路超载或用户误操作而受损。此外,放在输入端上的金属氧化物变阻(MOV)也有助于LED模块内的过压保护。典型开关电源保护电路:

  四、基于UC3842的反激式开关电源设计

  高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。传统的开关电源控制电路普遍为电压型拓扑, 只有输出电压单闭控制环路, 系统响应慢, 线性调整率精度偏低。随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。电流型控制系统是电压电流双闭环系统, 一个是检测输出电压的电压外环, 一个是检测开关管电流且具有逐周期限流功能的电流内环, 具有更好的电压调整率和负载调整率, 稳定性和动态特性也得到明显改善。UC3842是一款单电源供电, 带电流正向补偿, 单路调制输出的高性能固定频率电流型控制集成芯片。本设计采用UC3842 制作一款1 kW 铅酸电池充电器控制板用的辅助电源样机, 并对其进行工作环境下的测试。

  1 UC3842 的工作原理

  UC3842 内部组成框图如图1所示。其中: 1 脚是内部误差放大器的输出端, 通常此脚与2 脚之间接有反馈网络, 以确定误差放大器的增益和频响。2 脚是反馈电压输入端, 将取样电压加到误差放大器的反相输入端, 再与同相输入端的基准电压( 一般为2.5 V) 进行比较, 产生误差电压。3 脚是电流检测输入端, 与取样电阻配合, 构成过流保护电路。当电源电压异常时, 功率开关管的电流增大, 当取样电阻上的电压超过1 V时, U C3842 就停止输出, 可以有效地保护功率开关管。4 脚外接锯齿波振荡器外部定时电阻与定时电容, 决定振荡频率。5 脚接地。6 脚是输出端, 此脚为图腾柱式输出, 能提供±1A 的峰值电流, 可驱动双极型功率开关管或MOSFET.7 脚接电源, 当供电电压低于16 V 时, UC3842 不工作, 此时耗电在1 mA 以下。输入电压可以通过一个大阻值电阻从高压降压获得。芯片工作后, 输入电压可在10~ 30 V 之间波动, 低于10V 则停止工作。工作时耗电约为15 mA.8 脚是基准电压输出, 可输出精确的5 V 基准电压, 电流可达50mA.由图1( b) 可见, 它主要包括误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部基准电源和欠压锁定等单元。U C3842 的电压调整率可达0.01% , 工作频率为500 kHz.

  图1 UC3842 管脚图和内部结构图

  2 反激变换器的设计

  此次设计的反激变换器是从1 kW 充电器全桥开关电源初级侧高压直流部分取电作为输入电压。反激变换器预定技术指标如下。

  输入电压: 240~ 380 V DC; 输出电压: 12 V DC; 输出电流: 2 A; 纹波电压: ±500 mV;输出功率: 25 W;效率: 85% ;开关频率: 65 kHz;占空比:小于40%。

  如图2 所示, 电路由主电路、控制电路、启动电路和反馈电路4 部分组成。主电路采用单端反激式拓扑,它是升降压斩波电路演变后加隔离变压器构成的,该电路具有结构简单, 效率高, 输入电压范围宽等优点。工作模式选择在断续模式到临界模式之间。功率开关管选用N??MOSFET STP9NK70ZFP( 700 V, 5 A)。次级整流二极管选用肖特基二极管SR540( 40 V, 5 A) 。

  控制电路是整个开关电源的核心, 控制的好坏直接决定了电源整体性能。这个电路采用峰值电流型双环控制,即在电压闭环控制系统中加入峰值电流反馈控制。电路电流环控制采用UC3842 内部电流环,电压外环采用T L431 和光耦PC817 构成的外部误差放大器,误差电压直接送到UC3842 的1 脚。误差电压与电流比较器的同相输入端3 脚经采样电阻采集到初级侧电流进行比较,从而调节输出端脉冲宽度。2 脚接地。R4, C5 是UC3842 的定时元件, 决定UC3842 的工作频率,此设计中R4= 5.6 kΩ ,C5= 3300 pF.当UC3842 的1 脚电压低于1 V 时,输出端将关闭;当3 脚上的电压高于1 V 时,电流限幅电路将开始工作,UC3842 的输出脉冲中断。开关管上波形出现“打嗝”现象,从而可以实现过压、欠压、限流等保护功能。

  图2 系统原理图

  3 反馈回路参数的计算

  反馈电路采用精密稳压源TL431 和线性光耦PC817 构成外部误差电压放大器。并将输出电压和初级侧隔离。如图2 所示, R11、R12 是精密稳压源的外接控制电阻, 决定输出电压的高低, 和T L431 一并组成外部误差放大器。当输出电压Vo 升高时, 取样电压VR 13 也随之升高, 设定电压大于基准电压(TL431 的基准电压为2.5 V) , 使TL431 内的误差放大器的输出电压升高, 致使片内驱动三极管的输出电压降低, 使输出电压Vo 下降, 最后V o 趋于稳定; 反之, 输出电压下降引起设定电压下降, 当输出电压低于设定电压时, 误差放大器的输出电压下降, 片内驱动三极管的输出电压升高, 最终使UC3842 的脚1 的补偿输入电流随之变化, 促使片内对PWM 比较器进行调节, 改变占空比, 达到稳压的目的。

  从TL431 技术资料可知, 参考输入端的电流为2 μA, 为了避免此端电流影响分压比和避免噪声的影响, 通常取流过电阻R13 的电流为T L431 参考输入端电流的100 倍以上[ 6] , 所以:

  这里选择R13= 10 k Ω,根据TL431 的特性可以计算R12:

  其中, TL431 参考输入端电压Uref= 2.5 V。

  TL431 的工作电流Ika 范围为1~ 150 mA, 当R9 的电流接近于零时, 必须保证I ka 至少为1 mA, 所以:

  其中, 发光二极管的正向压降Uf= 1.2 V。

  UC3842 的误差放大器输出电压摆幅0.8 V《 Vo《 6 V, 三极管集射电流I c受发光二极管正向电流If 控制, 通过PC817 的Vce与I c关系曲线( 图3) 可以确定PC817 二极管正向电流I f 。由图3可知, 当PC817 二极管正向电流I f 在7 mA 左右时, 三极管的集射电流I c在7 mA 左右变化, 而且集射电压Vce 在很宽的范围内线性变化, 符合UC3842 的控制要求。

  图3 PC817 集射极电压Vce与二极管正向电流If 的关系图

  PC817 的电流传输比CTR= 0. 8~ 1. 6, 当I c= 7mA 时, 考虑最坏的情况, 取CT R= 0.8, 此时要求流过发光二极管最大电流:

  所以:

  其中, Uka为TL431 正常工作时的最低工作电压, Uka = 2.5 V.发光二极管能承受的最大电流为50 mA,TL431 最大电流为150 mA, 故取流过R9 的最大电流为50 mA。
  R9 的取值要同时满足式( 5) 和式( 6) , 即162《 R9《 949, 可以选用750Ω 。

  4 基于MOS 管最大耐压值的反激变压器设计

  由变换器预定技术指标可知变压器初级侧电压Vdcmin= 240 V, Vdcmax= 380 V, 预设效率η= 85%, 工作频率f = 65 kHz, 电源输出功率P out= 25 W。

  变压器的输入功率:

  根据面积乘积法来确定磁芯型号, 为了留有一定裕量, 选用锰锌铁氧体磁芯EE25/ 20, 电感量系数A L=1 750 nH/ N2 , 初始磁导率μi= 2 300, 有效截面积A e= 42. 2 mm2 。

  因为所选的MOS 管的最大耐压值V MOSmax= 700 V.在150 V 裕量条件下所允许的最大反射电压:
  其中, f 是开关频率, Hz.

  其中, 磁感应强度Bw= 0?? 23 T ; 由于此变换器设计在断续工作模式k= 1( 连续模式k= 0.5)。

  磁芯气隙:
  次级匝数:

  其中, Va 是辅助绕组电压, V 。

  为了减小变压器漏感, 采用夹心式绕法, 初级绕组分N p1 ( 78 T ) 和N p2 ( 78 T) 两部分绕制, 如图4 所示, Np1 绕在骨架最里层, 次级绕组N s绕在N p1和N p2之间, 辅助绕组绕Na 在最外层。
  5 样机测试结果及分析

  直流输入电压300 V 时所测结果如图5 所示。

  图5 MOSFET栅源极电压波形图

  从图5 可以看出: 开关管驱动脉冲前沿电压比较陡峭, 电压上升很快, 而且上升沿有一定过冲, 可以加快开关管的开通, 驱动电平适中, 满足驱动要求。开关管驱动脉冲占空比随着负载的加大而增大, 以满足输出电压的需要。带载2 A 时, 占空比达到31.33% 。

  图6 MOSFET 漏源极间电压波形图

  从图6 可以看出: 当负载为额定负载2 A 时, 变换器可靠地工作在断续模式。继续加大负载可以看到变换器的工作状态从断续模式到连续模式的过渡过程。钳位电路经调试以后, 使漏源极电压小于MOSFET的最大耐压750 V, 并有一定余量, 从而保护了MOSET , 延长使用寿命。

  如图7 所示, PWM 控制器U C3842 从采样电阻取得的流经MOSFET 电流波形。2 A 额定负载下峰值0. 93 V, 小于1 V, 控制器内部限幅电路不工作, 变换器可以稳定工作。大于1 V 时, 控制器会关闭驱动输出, 变换器停止工作。实现过载保护功能。

  图7 3 脚C/ S 端电流检测波形图( 带载2 A 时)

  从图5 -图7 可以看到, 从轻载到重载的负载条件过渡中, 所设计的变换器从电流断续模式到电流临界连续模式下工作。满载效率87?? 8%, 负载调整率2?? 5% ,电压调整率0?? 056% 。测试结果证明样机工作稳定可靠, 具有良好的静动态特性而且符合预定的性能指标。

  五、开关电源中浪涌电流抑制模块的应用

  1 上电浪涌电流

  目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。

  浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这类现象发生,而不得不选用更高额定电流的熔断器,但将出现过载时熔断器不能熔断,起不到保护整流器及用电电路的作用;过高的上电浪涌电流对整流器和滤波电容器造成不可恢复的损坏。因此,必须对带有电容滤波的整流器输入浪涌电流加以限制。

  2 上电浪涌电流的限制

  限制上电浪涌电流最有效的方法是,在整流器与滤波电容器之间,或在整流器的输入侧加一负温度系数热敏电阻(NTC),如图3所示。利用负温度系数热敏电阻在常温状态下具有较高阻值来限制上电浪涌电流,上电后由于NTC流过电流发热使其电阻值降低以减小NTC上的损耗。这种方法虽然简单,但存在的问题是限制上电浪涌电流性能受环境温度和NTC的初始温度影响,在环境温度较高或在上电时间间隔很短时,NTC起不到限制上电浪涌电流的作用,因此,这种限制上电浪涌电流方式仅用于价格低廉的微机电源或其他低成本电源。而在彩色电视机和显示器上,限制上电浪涌电流则采用串一限流电阻,电路如图4所示。最常见的应用是彩色电视机,这种方法的优点是简单,可靠性高,允许在宽环境温度范围内工作,其缺点是限流电阻上有损耗,降低了电源效率。事实上整流器上电处于稳态工作后,这一限流电阻的限流作用已完成,仅起到消耗功率、发热的负作用,因此,在功率较大的开关电源中,采用上电后经一定延时后用一机械触点或电子触点将限流电阻短路,如图5所示。这种限制上电浪涌电流方式性能好,但电路复杂,占用体积较大。为使应用这种抑制上电浪涌电流方式,象仅仅串限流电阻一样方便,本文推出开关电源上电浪涌电流抑制模块。

  3 上电浪涌抑制模块

  3.1 带有限流电阻的上电浪涌电流抑制模块

  将功率电子开关(可以是MOSFET或SCR)与控制电路封装在一个相对很小的模块(如400W以下为25mm×20mm×11mm)中,引出3~4个引脚,外接电路如图6(a)所示。整流器上电后最初一段时间,外接限流电阻抑制上电浪涌电流,上电浪涌电流结束后,模块导通将限流电阻短路,这样的上电过程的输入电流波形如图6(b)所示。很显然上电浪涌电流峰值被有效抑制,这种上电浪涌电流抑制模块需外接一限流电阻,用起来很不方便,如何将外接电阻省掉将是电源设计者所希望的。

  3.2 无限流电阻的上电浪涌电流抑制模块

  有人提出一种无限流电阻的上电浪涌电流抑制电路如图7(a)所示,其上电电流波形如图7(b)所示,其思路是将电路设计成线形恒流电路。实际电路会由于两极放大的高增益而出现自激振荡现象,但不影响电路工作。从原理上讲,这种电路是可行的,但在使用时则有如下问题难以解决:如220V输入的400W开关电源的上电电流至少需要达到4A,如上电时刚好是电网电压峰值,则电路将承受4×220×=1248W的功率。不仅远超出IRF840的125W额定耗散功率,也远超出IRFP450及IRFP460的150W额定耗散功率,即使是APT的线性MOSFET也只有450W的额定耗散功率。因此,如采用IRF840或IRFP450的结果是,MOSFET仅能承受有限次数的上电过程便可能被热击穿,而且从成本上看,IRF840的价格可以接受,而IRFP450及IRFP460则难以接受,APT的线性MOSFET更不可能接受。

  欲真正实现无限流电阻的上电浪涌电流抑制模块,需解决功率器件在上电过程的功率损耗问题。作者推出的另一种上电浪涌电流抑制模块的基本思想是,使功率器件工作在开关状态,从而解决了功率器件上电过程中的高功率损耗问题,而且电路简单。电路如图8(a)和图8(b)所示,上电电流波形如图8(c)所示。 

  3.3 测试结果

  A模块在400W开关电源中应用时,外壳温升不大于40℃,允许间隔20ms的频繁重复上电,最大峰值电流不大于20A,外形尺寸25mm×20mm×11mm或  35mm×25mm×11mm。

  B模块和C模块用于800W的额定温升不大于40℃,重复上电时间间隔不限,上电峰值电流为正常工作时峰值电流的3~5倍,外形尺寸35mm×30mm×11mm或者50mm×30mm×12mm。

  模块的铝基板面贴在散热器上,模块温度不高于散热器5℃。

  4 结语

  开关电源上电浪涌电流抑制模块的问世,由于其外接电路简单,体积小给开关电源设计者带来了极大方便,特别是无限流电阻方案,国内外尚未见到相关报道。同时作者也将推出其它冲击负载(如交流电机及各种灯类等)的上电浪涌电流抑制模块。

  六、开关电源中电磁干扰的抑制方法

  引言

  随着开关电源技术的不断发展和日趋成熟,各个应用领域对开关电源的需求也不断增长,但是,开关电源存在严重的电磁干扰()问题。它不仅对电网造成污染,直接影响到其它用电电器的正常工作,而且作为辐射干扰闯入空间,对空间也造成电磁污染。于是便产生了开关电源的电磁兼容(EMC)问题。电磁兼容是指设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

  开关电源的电磁干扰可分为传导干扰和辐射干扰两大类。传导干扰通过交流电源传播,频率低于30 MHz。辐射干扰通过空气传播,频率在30MHz以上。

  本文针对一种桌面式180W塑壳开关电源(负载是12V/15A的半导体制冷冰箱,电源外形大小205mm×90mm×62mm)所存在的电磁干扰超标问题,从原理上进行了分析,并探讨了解决方案。

  1 180 W开关电源的电路结构分析与电磁干扰测试

  1.1 主电路与结构布局分析

  该开关电源的电路原理如图1所示
  
  电容滤波整流器功率因数低,整流二极管导通时间较短,滤波电容充电电流瞬时值的峰值大,整流后的电流波形为脉动状,产生高的谐波电流。

  半桥电路中高频导通和截止的S1、S2、D3、D4和变压器T1是开关电源的主要骚扰源,产生高频高压的尖峰谐波振荡,该谐波振荡产生的高次谐波,通过开关管与散热器问的分布电容传入内部电路或通过散热器及变压器向空间辐射。

  该开关电源的内部布局如图2所示,左边是交流电源输入和直流输出,靠左边上下两侧留有通风孔,风机在右边,采用向外抽风方式散热,保证塑壳内的热量及时排出,避免热量在塑壳内积聚。该布局的优点是通风路比较通畅,但也存在缺点—输入输出接口安装得较近,在它们之间容易产生空间耦合,形成辐射骚扰。

  1.2 电磁干扰测试

  表l所列为测得的7~21次谐波电流的数值,其中11、15、17次谐波电流都超标。

  辐射骚扰预测结果在30~50MHz和100MHz处超出限值,如图4所示。
2 电磁干扰的抑制

  2.1 谐波电流的抑制

  采用功率因数校正可以解决谐波电流超标的问题。有源功率因数校正采用Boost升压PFC电路,功率因数提高到O.99以上,使得谐波电流很小,但电路复杂,成本也不低,而且电路中的开关管和高压整流二极管的开关噪声将成为新的骚扰源,使整机的EMI达标增加了难度。

  考虑到在交流输入电压(AC 220~250V)范围内,满足电压调整率情况下,适当减小滤波电容,输入串联电阻可以在一定程度上降低滤波电容充电电流瞬时值的峰值,满足谐波电流限值,且功率损耗在可以接受的范围之内,整机电源效率下降不多,也不失为较好方法。采用这一方法后实测谐波电流值如表2所列。

  2.2传导骚扰的抑制

  传导噪声主要来源半桥中功率开关管S1及S2以频率25 kHz交替工作,功率开关管集电极发射极电压Uce和发射极电流,。波形接近矩形波。傅立叶分析表明,矩形波脉冲具有相当宽的频率带宽,含有丰富的高次谐波,脉冲波形的频谱幅度在低频段较高。另外,功率开关管在截止期间.高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

  输入滤波器是为变换器的电磁骚扰电平和外界的电磁骚扰源设计的一种低阻抗通道(即低通滤波器),以抑制或去除电磁骚扰,达到电磁兼容的目的。

  如图5所示,输人滤波器是由电感(LFI、LF2)和CY电容(C4、C5)及Cx电容(C1、C2、C3)组成的低通滤波器电路构成。对频率较高的噪声信号有较大的衰减。C1、C2、C3是滤除共模干扰的电容,C4、C5是滤除差模干扰的电容,LF1、LF2是共模线圈。

  图3中低频传导干扰(O.15~lMHz范围)超标,共模噪声的主要骚扰源是功率开关管,低频传导干扰抑制以增加共模电感的电感量为主,当共模电感从原设计的15mH增加到24mH时,低频传导干扰最大处下降30dB,得到了显著改善。如图6所示。

  输入滤波器对20MHz以下噪声抑制有明显的效果。理想输入滤波器是低通滤波器,但实际上是带阻滤波器

  当开关电源频率增加时,所需的共模电感可大大减小,共模电感体积也减小。但是,开关电源在20MHz以上频带的辐射噪声份量有所增加,给辐射骚扰的达标带来麻烦。开关频率和共模电感的关系如表3所列。

  由于共模电感线圈存在寄生电容,高频噪声成分经过寄生电容向外发射骚扰,故使用单个大感量共模电感不容易达到好的高频滤波效果,一般采用两个共模电感,同样的电感量抑制高频噪声很见效,将有6dB以上的差值。

  Cx电容器高频阻抗频率特性是一个关系电磁骚扰抑制效果的重要参数。电容器在高频使用时等效为r(等效串联电阻)+c+L(等效串联电感)电路。由于电容器自身的固有电感(即等效串联电感)存在,在频率低的范围,电容器电抗呈容性,在频率高的范围,电容器电抗呈感性,这时抑制骚扰的能力就明显下降。电容器的固有引线电感越小和骚扰源的高频内阻抗越大,则抑制骚扰的效果越好。

  首先,从电磁骚扰源产生的机理人手,查找辐射骚扰源的所在,从根本上降低其产生辐射骚扰噪声的电平。在输出电压比较低的情况下,输出整流器和平滑电路的干扰可能比较

  严重+通过减小环路面积可以抑制di/dt环路产生的磁场辐射。整流及续流二极管工作在高频开关状态,也是个高频骚扰源。二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。

  C4及Cs的引线和连接地引线应尽量短,以使接地阻抗尽量小,噪声能经过电容旁路到地线,C4及C5取较大电容量滤波效果好,但是,随着电容量的增加泄漏电流也增加了,而泄漏电流值是电气安全中的重要指标,决不允许超过规定数值一一般的漏电流限制是3.5 mA,此桌面式塑壳开关电源属手持式设备,最大漏电流限制为O.75 mA,实测值为O.55mA。

  电源输入线缆要短,滤波器尽量靠近输入端口,避免滤波器输入输出发生耦合,而失去滤波作用。接地尽量简短可靠,减小高频阻抗,使干扰有效旁路。经过数次整改后,得到满意的结果如图7所示。  

  2.3辐射骚扰的抑制

  辐射骚扰足指由任何部件、天线、电缆或连接线辐射的电磁干扰。

  通常在电路元件布局上,应尽量使输入交流和输出直流插座(包括引线)分开并远离。采用一端输入另一端输出是.种合理的布局。但考虑电源内部散热通风,该电源采用图2的散热结构。不可回避的问题是输入输出线缆之间可能发生空间耦合,当有高频传导电流通过时就会产生强烈的辐射。

  首先,从电磁骚扰源产生的机理入手,查找辐射骚扰源的所在,从根本上降低其产生辐射骚扰噪声的电平。在输出电压比较低的情况下,输出整流器和平滑电路的干扰可能比较严重,通过减小环路面积可以抑制di/dt环路产生的磁场辐射。整流及续流二极管工作在高频开关状态,也是个高频骚扰源。二极管的引线寄生电感、结电容的存在以及反向恢复电流的影响,使之工作在很高的电压及电流变化率下,且产生高频振荡,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。

  铁氧体磁环和磁珠使用方便,价格便宜,抑制电磁干扰效果明显。铁氧体电感的等效电路为由电感L和电阻R组成的串联电路,L和R都是频率的函数。电阻值随着频率增加而增加,这样就构成了一个低通滤波器。低频时R很小,L起丰要作用,电磁干扰被反射而受到抑制;高频时R增大,电磁干扰被吸收并转换成热能,使高频干扰大大衰减。不同的铁氧体抑制元件,有不同的最佳抑制频率范围。通常磁导率越高,抑制的频率就越低。此外,铁氧体的体积越大,抑制效果越好。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。铁氧体抑制元件应当安装在靠近干扰源的地方。对于输入、输出电路,则应尽量靠近屏蔽壳的进、出口处。

  整流二极管使用肖特基二极管,其阳极套铁氧体磁珠(φ3.5×φ1.3×3.5),直流输出线缆用铁氧体磁环绕(φ13.5×φ7.5×7)2.5圈且靠近出口处。整改后辐射干扰最大处下降了约lOdB,但40MHz和100 MHz处余量较小,准峰值测试仅有5dB裕量。考虑到认证过程繁琐,周期长,而且各个认证检测服务中心之间允许有2~3dB的误差,产品的预测应在6dB以上的裕量为合适,如图8所示。

   铁氧体磁珠、铁氧体磁环的使用对骚扰源噪声的抑制有了较大改善,如仍还不能满足要求,只好采用屏蔽措施,在输入输出之间用2mm厚的铝板隔离,以切断通过空间耦合形成的电磁噪声传播途径。结果辐射骚扰噪声裕量达到了12dB以上,抑制噪声效果相当明显。通过以上措施大3m法电波暗室与IOm法电波暗室测试规定限值的转换:由于标准GB9254认定ITE(信息技术设备)在10m测量距离处得到辐射骚扰限值,而较多的EMC检测服务中心是在3m电波暗室内测试,因为场强大小与距离成反比,所以在3m法中测得的噪声电平比在10m法时的噪声电平值要下降10 dB。

  图4、图8、图9是由3m法电波暗室测得,其辐射骚扰限值为30~230MHz准峰值限值40dB,230~1000MHz准峰值限值47dB。图10是由10m法电波暗室测得,图9与图lO比较,辐射噪声波形相差不多。仅在儿个频率点的噪声电平略有增加。

  3 结语

  经过以上的整改后,再次测试l80W电源的电磁兼容完全达到了设计要求。在电源设计初期解决EMI问题,结构尚未定型,可选用的方法多,有利于降低成本。

  除以上所述的抑制措施外,还有其它一些方案,但设计方案都要兼顾电源成本。

  与EMI相关的因素多且复杂,仅做到上述的几点是远远不够的,还有接地技术、PCB布局走线等都是很重要的。电磁兼容的设计任重而道远,我们要不断进行研究,以使我国的电子产品电磁兼容水平与国际同步。

 

 

 


【上一个】 工程师不可不知的开关电源关键设计(三) 【下一个】 工程师不可不知的开关电源关键设计(一)


 ^ 工程师不可不知的开关电源关键设计(二)